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Abstract
It is known that mutually unbiased bases (MUBs), whenever they exist, are
optimal in an information theoretic sense for the determination of the unknown
state of a quantum ensemble. Such bases may not exist for most dimensions.
The present paper deals with information gain in some generalizations and
approximations of MUBs. We give estimates of the information loss (relative
to MUBs) in these suboptimal choice of bases. For some generalization of
MUBs we give exact calculations for the information gain. It is calculated
directly in terms of transition probabilities among the measurement bases. We
also give the formal solutions for the problem of quantum state tomography in
these cases1.

PACS numbers: 03.65.Wj, 03.67.−a, 02.10.Yn, 02.50.−r

1. Introduction

The state of a quantum system is completely specified by a ray in a complex Hilbert space H
(infinite dimensional, in general) or, more generally, by a density matrix. A density matrix is
a positive operator on H with unit trace. Thus, a density matrix has nonnegative eigenvalues
whose sum equals 1. In particular, it is Hermitian. In this work, we restrict ourselves to finite
dimensional spaces.

Often the state of the quantum system is not known a priori and has to be determined by
certain tests. The problem of state tomography is to determine the state from the outcomes of
measurements carried out on an ensemble of identically prepared systems. A general quantum
measurement scheme is given by a set of positive operator valued measures satisfying certain
constraints [3]. Similarly, in the context of tomographic quantum cryptography [1] we have

1 Some of the results in this paper was reported in the proceedings of EQIS 2005. A large part of this work was done
at CQCT, Macquarie University, Sydney.
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to choose a set of positive operator valued measures (POVM) for measurement. What is
the optimal choice of such POVMs? This has been partially answered for projection valued
measures (PVM) by an information theoretic analysis [2]. Let us distinguish two problems
concerned with general measurements. The first is the problem of estimation [3]: given a
measurement procedure and the data find the best estimates of the state that produced the
data, assuming some prior distribution on the state. A recent analysis of this aspect may be
found in [4]. The second problem which is the primary concern for the present paper may
be termed a design problem. Given a class of measurements to determine the parameters
characterizing the state, find the ‘best measurement’. We will see that in this optimization
problem the determinant of a certain matrix plays a crucial role. This matrix is of independent
interest since its inverse gives the formal solution to the state determination problem.
A substantial part of this paper is denoted to the study of this matrix. A brief outline of
the paper follows.

The first three sections are more or less reviews of known results from quantum theory and
statistical information theory which helps us fix the framework and the notation. In section 2
we state the formal problem of determining the quantum state of an ensemble. In section 3
we review the information content of a measurement. We use the phrase ‘information content’
(instead of information gain) because the information depends on the measurement and the
prior distribution of states and could be negative. However, the average information is
always non-negative and henceforth by information gain we will imply average information
gain.

Section 4 deals with the problem of quantum state determination by projective
measurements. In particular, we give formal solutions. The information gain of a class
of quantum measurements under the assumption that the prior distributions of the states is
uniform is proportional to the determinant of a certain matrix � [2]. There are some valid
objections to this assumption and we discuss its justification. We show that the information gain
is maximum for mutually unbiased bases. We also obtain some estimates on the information
gain in the general case based on certain determinant approximations [10]. In any case,
the matrix � is of independent interest as its inverse gives the formal solution to the state
reconstruction problem. In section 5 we apply the results of the previous sections to some
generalizations of mutually unbiased bases (MUBs). We define a class of bases which appear
to be new. We give exact calculations of the determinant of � in these cases by investigating its
spectrum. We also show the form of its eigenvectors. In particular, we get a concrete algorithm
for reconstructing the state from the probabilities. We first apply the general techniques and
formulae to some construction of bases in [12]. Then we discuss examples of a new class
of bases in small dimensions. The final section discusses some issues potential problems the
author aims to investigate in the future.

2. State determination

In this section we look into the problem of quantum state determination. Let H be a Hilbert
space of dimension n. Let V (H) be the set of Hermitian operators on H. The dimension of
V (H) as a real vector space is n2. Let �(H) ⊂ V (H) be the set of positive operators with
trace 1. It is a convex set. The map L : V (H) → V (H) such that L(T ) = T − Tr(T )

n
I is

linear and the image l(H) is the space of Hermitian operators with trace 0. It has dimension
n2 − 1. Here I denotes the identity operator. The affine space l(H) + I/n consists of all
Hermitian operators with trace 1. Therefore, a density matrix is completely specified by
n2 − 1 parameters.
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The state of a quantum system is not directly measurable. A measurement yields only
probabilities or more precisely frequencies. We assume for simplicity that all Hermitian
operators are observable. Let ρ ∈ �(H) be a state and A a Hermitian operator. Let
A = ∑

i ci |αi〉〈αi | be the spectral decomposition of A. The space of linear operators on H
becomes a Hilbert space of complex dimension n2 by defining the inner product

〈B,C〉 = Tr(B†C). (1)

The corresponding norm is the Frobenius norm. Its restriction to V (H) makes the latter
a real inner product space of dimension n2. The probability of obtaining the ith outcome
pi = Tr(|αi〉〈αi |ρ) = 〈|αi〉〈αi |, ρ〉 may be interpreted as projections of the state ρ onto the
corresponding ‘coordinate’ vector |αi〉〈αi |. It is more convenient to consider the traceless
Hermitian operators ρ − I/n instead of ρ. Now, a measurement on an ensemble in some
basis can at best give us an estimate of the n2 probabilities of the possible outcomes. We
may thus characterize a measurement of a nondegenerate observable A by the corresponding
orthonormal basis in the spectral decomposition. Thus, the measurement of several observables
on the subensembles of the original ensemble is equivalent to giving a set of bases. We shall
henceforth simply refer to a choice of bases of measurement as a measurement scheme. Let N
be the number of samples of the quantum system on which the measurement is made. Of the
n numbers fi = Ni/N , the relative frequencies of obtaining result i in a measurement in some
basis B only n − 1 are independent since

∑
i fi = 1. Let Pi = |αi〉〈αi |, i = 1, . . . , n be the

projection operators in B. They satisfy PiPj = δijPi and
∑

iPi = I . As vectors in V (H) they
are linearly independent. To avoid confusion we call the projection operators corresponding to
some basis in the ambient space H projectors when they are considered as elements of V (H).
But there are only n of them that are orthogonal. Further, if we have two bases Bi and B2,
then at most 2n − 1 projectors from B2 can be independent of those in B1 due to the relation∑

i Pi = I . Hence to get the n2 − 1 coordinates of ρ we need at least n + 1 bases such that
they contain a maximally independent set in the following sense. For each projector P

j

i from
the j th basis let T

j

i = P
j

i − I/n be the corresponding traceless operators. If the collection{
T

j

i

}
contain a maximally independent set (cardinality = n2 − 1) then they span l(H). We

call such a set of projectors a complete set of measurement bases (CSMB for short). If the
number of bases is n + 1 and they are complete then we call such a set independent. Suppose
we have two CSMBs S1 and S2. If all other conditions are identical, which one should
we pick for determining the unknown state of a quantum ensemble? We may assume ideal
conditions—perfect preparation procedures, perfect detectors and measuring devices etc—to
compare the two. In [2] Fields and Wootters proved that a set of mutually unbiased bases
(MUBs) is an optimal choice when the initial distribution is uniform. Two sets of orthonormal
bases {|αi〉} and {|βj 〉} are said to be mutually unbiased if |〈αi |βj ||〉2 = 1/n for any pair
of vectors. They further go on to show that such bases exist whenever the dimension n is
a power of some prime, extending the earlier work of Ivanovic [5] who demonstrated the
existence of MUBs in prime dimension. These works, however, left open the question of the
existence of MUBs for n which divides two or more distinct primes, e.g., six. It is now widely
believed that MUBs do not exist in such dimensions. However, we can expect CSMBs which
approximate MUBs. Then it is natural to ask: how much do we lose due to the approximations?
This question is relevant even in the cases where MUBs are known to exist because in more
realistic situations the measurement apparatus will only approximately implement the MUBs.
However, to answer such questions we must have an appropriate framework in which these
questions may be posed and answered precisely and quantitatively. The natural candidate
seems to be information theory.



10890 M K Patra

3. Information content of a measurement

In this section we follow [6] to define the information content of an experiment and apply it
to the case of the quantum state determination measurements. First let us look at the general
formalism. Let M be a measurement on some system S, not necessarily quantum. We
should use the term ‘experiment’ rather than measurement since the latter seems to imply a
single measurement. Let S be characterized by some parameters denoted by θ which will
usually be drawn from some subset Θ of R

k , the k-dimensional Euclidean space. Let p(θ)

represent the a priori probability distribution of the parameters θ . Corresponding to every
value of θ there is a probability measure on X—the set of possible measurement data which is
again a subset of some Euclidean space. We assume that this measure is given by p(x|θ) dx.
Consequently,

∫
B

p(x|θ) dx is the conditional probability of getting the outcome x in B ⊂ X
given the state θ . Let p(X) = ∫

X p(x|θ)p(θ) dθ be the probability density of the random
variable x. Note that we have used the same symbol p for the probability densities of different
random variables. This does not mean that they are the same functions. The notation is more
convenient and unambiguous if taken in proper context. Moreover, we do not differentiate
between a random variable and its values. In an experiment we are often interested in the
posterior probability p(θ |x). It is the probability density for θ given the measured values x.
The information content of the measurement M is defined as

I(M, p(θ),x) ≡
∫

p(θ |x) log p(θ |x) dθ −
∫

p(θ) log p(θ) dθ. (2)

If p(θ |x) = 0 then the integrand is defined to be zero and the logarithm is taken over an
arbitrary but fixed base. The justification for this definition is as follows. Consider the term

I0 ≡ −
∫

p(θ) log p(θ) dθ.

It represents the initial entropy capturing our prior uncertainty about the parameter θ . The
quantity

I1 = −
∫

p(θ |x) log p(θ |x) dθ

gives us the entropy after the measurement which resulted in the reading x of the relevant
parameter. We expect that the measurement decreases the initial uncertainty, which is the
purpose of any experiment! Thus I0 − I1 gives the information gain in the measurement.
It could be negative for a poor design. Then we know less (more uncertainty) after the
measurement! An important property required of any measure of information is a kind of
additivity property. Suppose it is known to the experimenter that θ is found in Θ′ ⊂ Θ with
probability q. Let I1 be a measure of information corresponding to this knowledge. In the
next stage the experimenter is told the value of θ . Let I2 and I3 be the amount of information
gained in the next phase when this value is in Θ′ or its complement, respectively. Then
the fundamental additive property [7] required of the information measure is that the total
information

I = I1 + qI2 + (1 − q)I3. (3)

Then it is not difficult to show that the information measure I0 is unique up to a constant
multiple. We do not discuss these points further but refer the reader to any good source on
basic information theory (e.g. [7] and [6]) for a discussion in the context of experiments. The
information gain will in general depend upon the experiment and the distribution of the data
x. Thus we may say that one experiment or measurement is more informative than others.
Let us calculate information content for some simple measurements in the quantum domain.
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Let the dimension n = 2. Suppose we have prior information that the state is a pure state
|0〉 or |1〉 with probability 1/2. We may therefore model the parameter space as Θ = {0, 1}
with p(0) = p(1) = 1/2. Then I0 = −(1/2 log(1/2) + 1/2 log(1/2)) = 1. The logarithm
is taken to the base 2. Now suppose that we choose to make measurement M1 in the basis
{|0〉, |1〉} which is natural, given the prior information. Then the conditional probabilities may
be conveniently written in the matrix form, for i, j ∈ {0, 1},

p(i|j) =
(

1 0
0 1

)
.

It is simply the unit matrix of order 2. Thus, if we get the measurement outcome 0 we are
sure that the state of the system was |0〉 etc. Then it is easy to see that I1(M1, i) = 0
and hence I(M1, i) = I0 − I1(M1, i) = 1. Now suppose we perversely choose the basis

| +−〉 = 1√
2
(|0〉 +−|−〉) for measurement M2. Then the corresponding conditional probability

matrix is

p(i|j) =
(

1/2 1/2
1/2 1/2

)
.

Again it is easy to see that the information gain in this case is I(M2, i) = 0. That is, we get
no information from M2. The same conclusion follows if the initial distribution on the set
{|0〉, |1〉} is (p, 1 − p) for any 0 � p � 1.

Although the information measure defined above depends on the state and may be negative
the average information

I(M, p(θ)) ≡
∫

I(M, p(θ),x)p(x) dx (4)

is independent of the state and is nonnegative [6]. Here,the probability density

p(x) =
∫

p(x|θ)p(θ) dθ (5)

is the mean probability distributions averaged over θ . Using Bayes’ rule

p(x|θ)p(θ) = p(θ |x)p(x)

it is not difficult to show that

I(M, p(θ)) =
∫ ∫

p(θ)p(x|θ) log (p(x|θ)) dx dθ −
∫

p(x) log (p(x)) dx. (6)

This is the formula we use to estimate the information gained in quantum measurements.

4. Quantum state tomography and MUBs

Given an n-dimensional quantum ensemble in an unknown state, how do we determine its state?
This is the problem of quantum state tomography. The state is not directly observable but we
may infer it from the probability distributions observed. As mentioned in the introduction, we
need (projective) measurement in n + 1 independent bases to determine the state completely
from the observed probabilities. Actually, what we observe are the frequencies of the possible
outcomes. Then it is a problem of estimation theory to draw inferences about the probabilities.
Thus, the state tomography problem has broadly two theoretical aspects. The first is a design
issue. What is the optimal choice of bases? The second aspect is a problem of decision or
estimation theory: for a given measurement what is the best possible estimate of the parameters
characterizing the state? In this paper we will be mainly concerned with the first aspect. So
let us formulate the problem precisely now.
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Suppose we are given an ensemble of quantum systems in some unknown state ρ. By
an ensemble we mean an unlimited supply of identically prepared quantum systems. Let
B1, . . . ,Br be bases in H with

Bk = {
P

k
i ≡ ∣∣αk

i

〉〈
αk

i

∣∣}n

i=1. (7)

A basis in the ambient Hilbert space will always mean an orthonormal basis unless specified
otherwise. As vectors in the n2-dimensional space V (H) at most n2 of the vectors from
the above bases can be linearly independent. Due to the relations

∑
i P

k
i = I for all

k we can only have all the n vectors from exactly one basis in any independent set of
projectors. If B = ⋃

k Bk contains a maximal independent set then we may choose
the first n − 1 projectors P

k
i , i = 1, . . . , n − 1 and I

n
as a basis for V (H). Then

{T k
i = P

k
i − I/n : i = 1, . . . , n − 1 and k = 1, . . . , r span l(H), the space of traceless

Hermitian operators. Let skl
ij = 〈

P
k
i , P

l
j

〉 = Tr
(
P

k
i P

l
j

)
. The nonnegative numbers skl

ij are the
respective transition probabilities among the vectors in the kth and lth bases. Note that skk

ij = δij

since each of the bases is orthonormal. A measurement scheme will be called complete if
the probability distributions in the set of bases defining the measurement determine the state
uniquely. The number of bases in a complete measurement scheme must be at least n + 1.
Since for a complete measurement

{
T k

i

}
span l(H), for any state ρ we must have

ρ − I/n =
∑

yk
i

(
P

k
i − I/n

) ≡
∑

yk
i T

k
i , (8)

for some numbers yk
i . Then,

Tr
(
(ρ − I/n)T l

j

) = pl
j − 1/n =

∑
yk

i

〈
T k

i , T l
j

〉 =
∑
i,k

t kl
ij yk

i . (9)

Here

tkl
ij ≡ 〈

T k
i , T l

j

〉 = Tr
(
T k

i T l
j

) = skl
ij − 1/n (10)

and pk
i is the probability of the ith outcome in the measurement in the kth basis. It is easy

to see that if the original bases are mutually unbiased then
〈
T k

i , T l
j

〉 = 0 for k 	= l, that
is, the operators T k

i and T l
j , k 	= l are orthogonal when considered as vectors. Let � be the

(n2 − 1) × (n2 − 1) matrix whose entries are given by tkl
ij . It is the Gramm matrix (see [15],

p20) of the vectors T k
i . If the vectors T k

i are independent the matrix � is invertible. If we
consider the parallelepiped spanned by the vectors T k

i then t kl
ij are the angles between the sides

T k
i and T l

j . Note also that the components yk
i may be used as input parameters characterizing

the state (denoted by θ earlier). We will denote these by a vector Y . If p denotes a vector of
dimension n2 − 1 whose components are pi

j − 1/n above then

Y = �−1p.

So in principle we can determine the state if we know the probabilities in n + 1 independent
bases. Even if the measurement scheme were complete but not independent we can solve
equation (8) since the rank is maximal. In this case �−1 will denote the generalized or
Moore–Penrose inverse (see [16] and [17], p 421). We summarize the above discussion in the
following proposition.

Proposition 1. Let ρ be the state and Bi ≡ {∣∣αi
j

〉∣∣j = 1, . . . , n
}
, i = i, . . . , r be bases in H.

Let P i
j = ∣∣αi

j

〉〈
αi

j

∣∣ be the corresponding projectors and define

T i
j = P i

j − I

n
, i = 1, . . . , r and j = 1, . . . , n − 1.
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Then if the corresponding measurement scheme is complete any state ρ is completely
determined by the probabilities pi

j = Tr
(
ρP i

j

)
, i = 1, . . . , r and j = 1, . . . , n − 1 and

the transition probabilities sik
j l = Tr

(
P i

j P
k
l

)
.

By a measurement we mean a collection of several observations in different bases on
subensembles of the original ensemble. We picture a massively parallel setup where we have
a several measuring devices Dk for each basis Bk . The original ensemble is divided into large
subensembles and tested by each of these n + 1 groups of devices. For each k � n + 1 we get
frequencies mk

i for the ith outcome, 1 � i � n − 1 in the kth device group. The numbers mk
i

constitute the measurement data x in (2) and (6). What is a reasonable probability distribution
for the mk

i ?
Before answering this question we have to posit some prior distribution of states. This

is actually a subtle point [19–21]2. The first problem that we encounter is that of probability
assignments: given that ensemble could be in two states ρ1 and ρ2 with probability q and
1 − q do we put this information in the distribution p(θ) or do we take qρ1 + qρ2 as the
state with probability 1? Both possibilities will yield the same posterior distributions. This
point is discussed well in [21] and he proposes that the assignment of probabilities should
reflect the nature of our ignorance. We further add that this ignorance should be assessed
by taking the whole picture into account. Specifically, in the problem of state determination
we assume that whenever we use some measurement scheme an ensemble of identically
prepared systems is given to us. For example, if the preparation device randomly chooses a
qubit in a state with σz = 1 or σx = 1 with equal probability then the appropriate state is
ρ = 1/2(1/2(1 + σz)) + 1/2(1/2(1 + σx)). But when we use the same measurement scheme
with a different preparation device or at some other time we could get a different ensemble.
To measure the information gain for the measurement scheme we must consider its potential
for use with any preparation device and this is what we mean by the phrase ‘whole picture’.
Now, how do we fix the distribution of probabilities for all such preparation devices. At
first glance, it seems reasonable to posit a uniform distribution assuming that all states are
equally probable. However, the main problem with the uniform distribution is that it depends
upon the parametrization we use to characterize the state [22]. We may choose a prior which
is least informative (see [20] and the references therein). In classical Bayesian theory the
Fisher information metric provides a unique volume element on a Riemannian manifold of
probability distributions. This volume element provides the most noninformative prior. The
quantum case is further complicated by the fact that there is a nondenumerable family of such
metrics. We may however compare the relative ‘noninformativity’ of some of the well-known
metrics as is done in [20]. It turns out that in this comparison the uniform distribution is
a rather ‘informative’. However, let us point out some of our reasons for staying with a
uniform prior. The uniform prior that Slater [20] compares to other distributions is over a
standard parametrization of the Bloch sphere for a two-dimensional system. We take different
parameterizations afforded by bases in the space l(H) whereH is of arbitrary dimension. These
bases in l(H) are the projectors formed by the corresponding bases in H. The parametrization
that we use are the coefficients with respect to some such fixed basis in l(H). If we change
to another basis the information gain changes by a constant factor that is independent of the
measurement scheme. As we see below, the factor which does depend on the measurement
scheme is a certain determinant and we take this as a measure of information gain. The point
is, we are not interested in the absolute value of the information gain but only that factor which
depends on our choice of measurement. The question of prior has greater importance when
dealing with the issue of estimation, especially if we follow a Bayesian approach. Further, as

2 The author is grateful to a referee for bringing this point to his attention and suggesting some references.
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pointed out in the introduction, the above determinant is of independent interest and the main
thrust of the paper is estimating or calculating it. Last but not least, we appeal to simplicity
for the present choice of prior and hope to tackle more complicated priors in future work.

Now coming back to the distribution for the frequencies mk
i (this is p(x|θ) in equation 6)

we may appeal to the local limit theorem [8] in probability theory which roughly states that
for independent identically distributed random variables the probability distribution of their
frequencies tends to the normal distribution in the limit N → ∞, N being the number of trials.
We must have some prior distribution for the states. Let V be the volume of the parallelepiped
spanned by the vectors T k

i . Assuming a uniform distribution for the states it can be shown
that [2] the average information gain in a quantum measurement for state determination is
proportional to ln V plus an additive constant independent of the measurement scheme. The
limiting case may also derived as a consequence of the law of large numbers [8]. We will take
ln V as the measure for information content of a quantum test of an ensemble in CSMB and for
a CSMB C write I(C) for the information gain and V (C) for the corresponding volume. The
fact that the volume of the parallelepiped spanned by the bases gives a measure of information
may be heuristically seen as follows. We noted earlier that the probability pk

i is the projection
of the unknown state ρ onto the vector P k

i . Hence, pk
i − 1/n is the projection onto the

‘coordinate axis’ T k
i of the parallelepiped. The observed frequencies are distributed around

these projections. The spread of this distribution gives the uncertainty in the measurement.
Each basis defines one such spread. The total uncertainty will be the sum of individual
uncertainties in each basis. The overlapping of these spreads will add to the uncertainty due to
the duplications. Hence, the larger the volume of the parallelepiped defined by the bases the
lesser is the overlapping of spreads and hence a reduction in the uncertainty. As shown below,
the parallelepiped formed by the MUBs has the maximum volume. The sufficiency part in the
next result was already given in [2] but the present approach is different.

Theorem 1. Information gain I(C) is maximum if and only if C consists of mutually unbiased
bases.

Proof. From the preceding discussion, we have to show that the volume V (C) spanned
by the vectors T k

i is maximal iff T k
i and T l

j are orthogonal for k 	= l. Note first that〈
T k

i , T k
j

〉 = δij − 1/n. Consider the (n2 − 1) × (n2 − 1) matrix �(C) = (
t kl
ij

) = 〈
T k

i , T k
j

〉
and

assume the ordering defined by the pair {k, i}. This simply means that the matrix consists of
n + 1 blocks γ kl , each a square matrix of size (n − 1) such that γ kl(ij) = t kl

ij :

�(C) =




γ 11 γ 12 . . . γ 1n+1

γ 21 γ 22 . . . γ 2n+1

...
... . . .

...

. . . γ n+1,n+1


 . (11)

If we choose any orthonormal basis for l(H) and express T k
i in this basis. Let T be the

corresponding real matrix of the coefficients, then it is clear that T tT = �(C), where T t is
the transpose of T . It follows that det �(C) = (V (C))2 and �(C) is positive definite. Thus
maximizing V (C) is equivalent to maximizing �(C). Below we will focus on the latter. From
the generalized Fischer–Hadamard inequality [9] it follows that

det �(C) � det γ 11 · · · det γ n+1,n+1. (12)

The right-hand side is the product of the determinants of the diagonal blocks in �(C). Now,
if the T k

i and T l
j are orthogonal for k 	= l then the off-diagonal blocks are all zero matrices

and the equality holds in equation (12). This proves the sufficiency part.
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The equality holds in (12) only if the following condition is satisfied [9]. Let R be the
(n + 1) × (n + 1) matrix such that R(ij) = 1 if γ ij 	= 0 and R(ij) = 0 otherwise. Then the
equality holds if and only if there is a permutation matrix of order n + 1 such that PRP −1

is triangular. Since � is symmetric and P −1 = P t it follows that if PRP −1 is triangular
it must be diagonal. The operation R → PRP −1 permutes the diagonal elements of R
among themselves. Hence, PRP −1 is diagonal iff all off-diagonal elements are zero. That is,
γ ij = 0 for i 	= j . That is, the original bases are mutually unbiased. The necessity is proved.

�

The above theorem gives an upper bound. A natural question is: how tight is the
bound? This pertains to the estimation of the information content in bases which are
independent but not mutually unbiased. We now give an estimate of the relative loss due
to such a non-optimal choice. First let us compute the determinant in the case of a set of
n + 1 MUBs. We have only diagonal blocks in the matrix �. Recall that a diagonal block
γ kk(ij) = 〈

P
k
i − 1/n, P

k
j − 1/n

〉 = δij − 1/n. The following notation will be used in the rest
of the paper. Let Jrs denote the r × s matrix all whose entries are 1. Further, we let Jr = Jrr

and Ir denote the identity matrix of order r. Thus all the diagonal blocks γ kk are equal to
In−1 − Jn−1/n. Sometimes we suppress the subscripts if the dimensions are clear from the
context. We also write � instead of �(C) when the set of measurement bases C is fixed. Let
�0 be the submatrix of � consisting of the diagonal blocks.

Lemma 1. det(�0) = 1
nn+1 .

Proof. First note that J 2
n−1 = (n − 1)Jn−1. The eigenvalues of Jn−1 are, therefore, n − 1 and

0. The rank of Jn−1 is 1. Hence the eigenvalues of I −Jn−1/n are 1/n and 1. The determinant
of each block is therefore 1/n and since there are n + 1 blocks the result follows. �

A simple consequence of the lemma is that a set of MUBs are independent. Let us now turn to
the general case. The diagonal blocks are the same and (γ kk)−1 = (I −Jn−1/n)−1 = I +Jn−1.
Hence in block form we have

det �(C) = det �0 · det




I (I + Jn−1)γ
11 · · ·

...
...

...

· · · · · · I


. (13)

That is, the off-diagonal blocks are multiplied by the matrix I +Jn−1. Consider γ kl . Recall that
γ kl(ij) = skl

ij − 1/n, i, j � n − 1, where skl
ij are transition probabilities. An easy calculation

shows that (I + Jn−1)γ
kl(ij) = skl

ij − skl
in. The term skl

in appears because we omitted the nth
basis vector from each measurement basis in the Hilbert space H. If we had chosen another
vector, say, the first then skl

i1 would have been subtracted. The point is the information content
depends on the differences of probabilities. Only in the case of MUBs are these differences
all zero. Next we give an estimate in the general case.

Theorem 2. Let
∣∣skl

ij − skl
ir

∣∣ < ε for some ε > 0. Let �′ = �−1
0 �(C) − In2−1 and let λm be the

minimum eigenvalue of �′. Suppose λm > −1. Then

e
(n2−n)2(n2−1)ε2

1+λm

det �(C)

det �0
� 1. (14)

Proof. The theorem is a consequence of an estimate given in [10]. From its definition the
diagonal blocks �(C) are positive semidefinite because it is a real matrix of the form 〈bi , bj 〉
for vectors bi in an appropriate dimension and its diagonal blocks are positive definite. Hence
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the estimate in [10] is applicable. The upper bound is just the Hadamard–Fischer inequality.

The lower estimate in [10] is e
−(n2−1)ρ2

1+λm , where ρ = max{|λi | : λi an eigenvalue} is the spectral
radius of �′. The fact that ρ � max{|Ri |}, where |Ri | is the sum of absolute values of the
entries in the ith row of �′ is a fact from linear algebra [11]. We get n2 − n because the
diagonal blocks in �′ are zero. �

As an illustration let ε � 1/n4. Then a simple calculation yields det(�(C))/ det(�0) �
e−1/n2

. The corresponding loss in information is O(1/n2). In cases where MUBs are known
to exist, that is, when n is a prime power, it is natural to expect that in some actual designing
for testing in these bases there would be errors. If we can bound the errors by some ε then
the information loss can be estimated. Even in cases where MUBs are not known to exist
approximate MUBs may be constructed [12]. However, a direct application of the above
estimates to their constructions does not yield very good lower bounds. If ε � 1/n3, as in
some cases of [12], then the information loss can be estimated to be less than a = O(1). We
now consider some generalizations of MUBs and give exact calculations for the corresponding
measurement schemes.

5. Generalization of MUBs and calculation of determinants

We now consider a generalization of MUBs. Then we investigate the spectrum and the
eigenvectors of the corresponding �. Our method provides an algorithm for solving equation
(8) for the parameters characterizing the state. In these cases the method gives solutions
even when the bases are complete but not necessarily independent. We apply the results and
techniques developed in the first section to some bases constructed in [12]. We also give
examples of the generalized MUBs.

5.1. A generalization of MUBs

In this section we consider the following generalization of mutually unbiased basis. Suppose
that there exist bases Bi ≡ {

P i
j = ∣∣αi

j

〉〈
αi

j

∣∣ : j = 1, . . . , n
}

for i = 1, . . . , r satisfying the
following equations:

Tr
(
P i

j P
k
l

) = sjl for all i, j, k, l. (15)

We write S ′ for the (n − 1) × (n − 1) matrix with entries sjl . We note that these
equations express that for some predetermined orderings of the bases the matrices of
transition probabilities M(Bi ,Bk) = (

Tr
(
P i

j P
k
l

))
are all equal to S ′. We observe that

these matrices are doubly stochastic [14]. In the case of MUBs S ′ = Jn/n. Let S be
the (n − 1) × (n − 1) matrix obtained by deleting the last row and column of S ′ and let
A = S − Jn−1/n. The entries of A are scalar product (the trace product) of the operators
T i

j = P i
j − In−1/n and T k

l = P k
l − In−1/n, 1 � j, k � n − 1. We have noted earlier that the

unknown state is completely determined if the probability distributions in the bases {Bi} are
known provided the T i

j span l(H). The matrix connecting the probabilities and the state is the
(n − 1)r × (n − 1)r matrix � of transition probabilities

� = �(C) =




σ A A · · · A

A σ A · · · A

...
...

. . .
...

...

...
...

...
. . .

...

A · · · · · · A σ




.
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We have to calculate the determinant of �. We do this by finding the eigenvalues of �. We
will also indicate how to find the eigenvectors. First note that S must be a real symmetric
matrix. If x is an eigenvalue corresponding to an eigenvector X of � then write the eigenvalue
equation as

�X ≡ �



x1

x2

...

xr


 = xX (16)

where xi are (n − 1)-dimensional vectors. Then we have the equations

σxi + A
∑
j 	=i

xj = xxi ⇒ (xIn−1 − σ + A)xi = Ay with y =
r∑

j=1

xj . (17)

The last equation implies that the vectors xi , i = 2, . . . , r must be of the form xi = x1 + ζi

where the vectors ζi are in the kernel of the operator K(x) ≡ (xIn−1 − σ + A). It is easy to
see that K(x)u = 0 iff Sui = (1 − x)ui . Therefore, the eigenvalues of � are of the form
1 − d, where d is an eigenvalue of S unless all the vectors xi are equal. Let us first suppose
this. That is, X = (z, z, . . . , z)T . Then we must have(

(r − 1)S − r

n
Jn−1

)
z = Gz = (x − 1)z. (18)

Since G is real symmetric we have n − 1 eigenvectors with eigenvalues 1 + d ′, where d ′ is an
eigenvalue of G. We summarize the above discussion in the following.

Proposition 2. Let �′ be the matrix of transition probabilities among r bases written in a
block form such that the (i, j)th block Cij is the transition probabilities of the first n − 1
vectors of the ith and j th bases, respectively. Suppose Cij = S if i 	= j and Cii = In−1. Let
� = �′ − J(n−1)r

n
. Then the eigenvalues of � are either 1 + d ′ or 1 − d where d ′ and d are the

eigenvalues of G = (
(r − 1)S − r

n
Jn−1

)
and S, respectively. The eigenvectors of � are of the

form

Z = (z, z + ζ1, z + ζ3, . . . , z + ζr−1)
T (19)

where the vectors ζi are all zero (corresponding to eigenvalue 1 + d ′) or are eigenvectors of S
with the same eigenvalue.

The proposition gives the eigenvalues and the form of eigenvectors. To obtain
multiplicities and to get the eigenvectors we have to know more about the structure of S.
Let us call the eigenvalues and eigenvectors corresponding to d ′ and d type 1 and type 2,
respectively. In general, suppose that none of the transition probabilities sij is zero. We call
this an irreducible measurement scheme following a similar definition in the case of Markov
chains [13]. For an irreducible measurement scheme only type 1 eigenvalues can be zero. For
a type 2 eigenvalue can be zero if and only if the doubly substochastic matrix S has 1 as an
eigenvalue. The above condition implies that

|S|∞ ≡ max
i

∑
j

|sij | < 1.

That is, the matrix norm defined by taking the maximum of the sum of absolute values of the
rows (see [15] chapter IV) is less than 1. If we had x = Sx then ‖x‖ � |S|∞‖x‖ < ‖x‖ which
is impossible unless x = 0. Thus, � is singular if and only if the matrix G has an eigenvalue −1.
Now let us turn our attention to G. First, recall that S is the submatrix of the n × n matrix S ′
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obtained by deleting the last row and column. We define G′ = (r − 1)S ′ − r
n
Jn. Note that,

like S ′, the matrix SD ≡ −G′ has row and column sums equal to 1. However, the entries of
SD may be negative unless all the transition probabilities satisfy sij � (n + 1)/n2. Then, if all
the entries of SD are positive we conclude that the bases Bi are independent.

Now let us focus on type 2 eigenvectors. Thus, suppose Z is a type 2 eigenvector of �

with eigenvalue x. It is given by equation (19) such that all the ζi are eigenvectors of S with
eigenvalue 1 − x and at least one of them is nonzero. Let ζ = ∑

i ζi . Then we have the
condition

Gz = (x − 1)(z + ζ ) +
Tr(ζ )

n
e. (20)

Here the trace Tr of a vector is the sum of its entries and e = (1, . . . , 1)t . If we
choose ζ = 0 then the above equation reduces to Gz = (x − 1)z. This is possible
only if (x − 1) is an eigenvalue of G. That is, S and G have eigenvalues d = 1 − x

and −d, respectively. Suppose, there are m eigenvalues, counted with the multiplicities,
for which this holds. Let {ζ1, . . . , ζm} be the corresponding eigenvectors of S. Let
Ki = {(z + ζi, z − ζi, z, . . . , z), (z + ζi, z, z − ζi, z, . . . , z), . . . , (z + ζi, z, . . . , z, z − ζi)}.
The set of vectors ∪iKi can be chosen to be linearly independent and in fact orthogonal. We
have to be careful about the special case where S and G have common eigenvectors. It is not
difficult to show that there are (r − 1)m such vectors. Next, if (x − 1) is not an eigenvalue of
G then G − (x − 1)In−1 is invertible and equation (20) has a unique solution for z. Then we
find (r − 1)(n − 1 − m) independent eigenvectors of the form (z, z, . . . , z + ζ, z, . . . , z) for
each eigenvector ζ of S belonging to the eigenvalue 1 − x. Add the n − 1 type 1 eigenvectors.
We have a complete set of r(n − 1) eigenvectors of �. We summarize the preceding analysis
in the following theorem.

Theorem 3. Let �′ be the matrix of transition probabilities among r bases written in a block
form such that the (i, j)th block Cij is the transition probabilities of the first n − 1 vectors
of the ith and j th bases, respectively. Suppose Sij = S if i 	= j and Sii = In−1. Let
� = �′ − Jr(n−1)

n
. Then the eigenvalues of � are either 1 + d ′ (type 1) or 1 − d (type 2) where

d ′ and d are the eigenvalues of G = (
(r − 1)S − r

n
Jn−1

)
and S, respectively. There are n − 1

type 1 eigenvectors of � of the form (z, . . . , z) where z is an eigenvector of G. The type 2
eigenvectors are further divided into two classes.

(1) The first class corresponds to those eigenvalues d for which −d is an eigenvalue of G. If
there are m such eigenvalues, counted with multiplicity, then we can construct (r − 1)m

independent eigenvectors of � which are of the form (z + ζi, z − ζi, z, . . . , z) where
ζi, i = 1, . . . , r are eigenvectors of S.

(2) The second class of eigenvectors correspond to those eigenvalues d of S for which −d

not an eigenvalue of G. Then, the eigenvectors of � are of the form (z′, z′, . . . , z′ +
ζ, z′, . . . , z′)T where z′ = (G + d)−1(−dζ + (Tr(ζ )/n)e) and ζ an eigenvector of S.
There are (r − 1)(n − 1 − m) independent vectors in this class.

The theorem gives a concrete way of constructing a complete set of eigenvectors of �. This
set of eigenvectors need not be orthogonal. But we can construct a complete orthonormal set
by the Gramm–Schmidt procedure. Let U be the matrix of an orthonormal set of eigenvectors.
Since U †�U = D is the diagonal matrix of eigenvalues of � we get �−1 = UD−1U †. We
take the generalized inverse of � when the bases are complete but not independent. We have
‘solved’ the state reconstruction problem. In reality, we do not get the probabilities but only
the frequencies and we have to use some statistical estimation method for the probabilities.
As a consequence of the theorem we get the following corollary.
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Corollary 1

det(�) = (det(I − S))r−1(det(I + G)).

All the determinant calculations in the preceding sections can be derived from the above
corollary. An immediate consequence of the above theorem is the following corollary which
deals with a somewhat more general case. We use the notation of the theorem.

Corollary 2. Suppose we have r bases {B1, . . . ,Br} such that the each of the first k bases is
mutually unbiased with respect to the rest. Suppose further that the remaining r − k bases
have a constant transition probability matrix S.

Then there are three sets of eigenvalues for �. The first, called type 0, contains only
1 and 1/n with multiplicity (n − 2)k and k, respectively. The second and third types
are the type 1 and type 3 eigenvalues of the theorem. Their multiplicities are obtained
by replacing r with r − k in the theorem. The eigenvectors for type 0 are (1, . . . , 1, 0)T

(eigenvalue 1) and (1,−1, 1, . . . , 1, 0)T , . . . , (1, 1, . . . , 1,−1, 0)T , where 0 is the zero vector
in dimension (r − k)(n − 1). The type 1 and type 2 eigenvectors are of the form (0, X)

and (0, Z), where 0 is now the zero vector in dimension k(n − 1) and X and Z are the
type 1 and type 2 eigenvectors given in the theorem with r replaced by r − k. Finally,
det(�) = (det(I − S))r−k−1 det(I + G)/nk .

The corollary is immediate because of the structure of �. In the first k rows (and columns)
the off-diagonal blocks are zero and in the rest the off-diagonals blocks are all equal to
S − Jn−1/n.

We conclude this section with several examples.

5.2. Example 1

In [12] the authors use some number theoretic results on character sums to define sets of bases
which approximate MUBs. We only consider the case where the dimension n = p − 1, p

a prime. Let Fp be the finite field of integers modulo p and F×
p be the multiplicative group

of nonzero elements. It is well known that F×
p is cyclic, that is, there is an element u ∈ F×

p

such that F×
p = {ui, i = 1, . . . , n}. Let χ : F×

p → C be the function χ(u) = e2π iu/n and
χ(uj ) = χj (u). The function χ is a character on the group F×

p . Let

(∣∣αj

k

〉)
l
= 1√

n
e2πij l/pχk(l), 0 � j � n − 1, j, k = 1, . . . , n and Bj = {∣∣αj

k

〉}
.

Here
(∣∣αj

k

〉)
l

is the lth element of the complex column vector
∣∣αj

k

〉
. The bases are {B0, . . . ,Bn}

with B0 = {∣∣α0
k

〉}
the standard basis. In [12] an estimate of the product

∣∣〈αa
i

∣∣αb
j

〉∣∣ is given.
However, an exact calculation is possible3 in this case, yielding for a or b 	= 0,∣∣〈αa

i

∣∣αb
j

〉∣∣2 = sab
ij = δij , a = b

= n + 1

n2
, a 	= b, i 	= j

= 1

n2
, a 	= b, i = j. (21)

3 This fact was pointed out to me by Professor Igor Shparlinski. I am grateful to him for several illuminating
discussions.
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Clearly for a or b = 0 (but not both), sab
ij = 1/n. The basis B0 is unbiased with respect to

the rest. The matrices S and G are given by

S = −1

n
In−1 +

n + 1

n2
Jn−1 and G = −n − 1

n
In−1 − 1

n2
Jn−1.

The eigenvalues of S are −1/n and 1 − (n + 1)/n2 with respective multiplicities n − 2 and 1
and eigenvalues of G are 1/n−1 and 1/n2 −1 with the same multiplicities. Using corollary 2
the eigenvalues of � with multiplicities are as follows: (1, n−2), (1/n, 1) ( type 0), (1/n, n−
2), (1/n2, 1) (type 1), (1 + 1/n, (n − 1)(n − 2)), ((n + 1)/n2, (n − 1)) (type 2). Hence the
determinant is

det � =
(

(n + 1)n−1

nn

)n−1
1

nn+1
.

Using lemma 1 we see that the information loss in measuring in the KRSW with respect to a
corresponding MUBs is proportional to �I = log(det �)0 − log(det �) = (n − 1)(n log n −
(n − 1) log(n + 1)). Hence (n − 1)(log(n + 1) − log e) < �I < (n − 1)(log(n + 1) − log 2).
The base of the logarithm is arbitrary here although it is usually taken to be 2 in information
theory. We note that information loss is of the same order as the information gain of MUBs.

Using corollary 2 we can also find out the eigenvectors of �. The calculations are
straightforward and we only sketch the construction for some of the type 2 eigenvectors
corresponding to the eigenvalue d = 1 − (n + 1)/n2. Since −d is not an eigenvalue of G
the eigenvectors are given by the second form of type 2 vectors in the corollary (and the
preceding theorem). The corresponding eigenvector ζ of S may be taken to be e. We have
(G + d)−1(−dζ + Tr ζ/ne = −e/n. Hence, the eigenvectors of � for eigenvalue 1 − d

are (e/n,−(1−1/n)e, e, . . . , e), (e/n, e/n,−(1−1/n)e, . . . , e/n), (e/n, e/n, . . . ,−(1−
1/n)e). We can similarly construct eigenvectors. In fact, we can get an orthonormal set of
eigenvectors yielding a solution to the state determination problem. Finally we observe that if
we had a basis B′

0 (instead of B0) such that all the transition probability matrices were equal,
then the determinant of the corresponding � is zero and the bases are dependent.

5.3. Example 2 (dimension 2)

B1 =
{
α1

0 =
(

1
0

)
, α1

0 =
(

0
1

)}
, B2 =

{
α2

0 =
(

a

b

)
α2

1 =
(

b

−a

)}
and

B3 =
{
α3

0 =
(

a

beit

)
α3

1 =
(

b

−a eit

)}
,

cos t = 1 − 1

2a2
and a =

√
1 − b2 � 1/2.

The transition probability matrix for any pair of bases is(
a2 b2

b2 a2

)
.

Calling this collection of bases C we obtain the corresponding

�(C) =




1
2 a2 − 1

2 a2 − 1
2

a2 − 1
2

1
2 a2 − 1

2

a2 − 1
2 a2 − 1

2
1
2


 .

In this simple case the blocks of � are simply numbers (one-dimensional). The eigenvalue of
type 1 is 2a2 − 1/2 with one eigenvector (1, 1, 1)T and the type 2 eigenvalue 1 − a2 has two
eigenvectors (1,−2, 1)T and (1, 1,−2)T , and the determinant is (2a2 − 1/2)(1 − a2)2.
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5.4. Example 3 (dimension 3)

In the previous example in two dimensions the transition probability matrix was the same for
any two bases. This is the situation that theorem 3 deals with. However, the first example
draws on corollary 2. In three dimensions there is no ‘easy’ example corresponding to the
theorem although some rather messy calculations suggest that such bases should exist. But it
is relatively easier to find examples corresponding to the corollary. Thus let ω be a cube root
of 1 and define

U1 = 1√
3


1 1 1

1 ω2 ω

1 ω ω2


 U2 = 1√

3


 1 1 1

eiα eiαω2 eiαω

1 ω ω2




U3 = 1√
3


 1 1 1

1 ω2 ω

e−iα e−iαω e−iαω2


 .

We also let U0 be the identity matrix. Our bases consist of the column vectors of these
matrices. Let Kij denote the transition probability matrix between bases i and j , respectively.
Then

P0i = 1

3


1 1 1

1 1 1
1 1 1


 Pij = S ′ = 1

9




5 + 4 cos α 2(1 − cos α) 2(1 − cos α)

2(1 − cos α) 5 + 4 cos α 2(1 − cos α)

2(1 − cos α) 2(1 − cos α) 5 + 4 cos α


 .

We write the matrix S and G in a convenient form

S = 1

3

(
a b

b a

)
G =

(
2a
3 − 1 2b

3 − 1
2b
3 − 1 2a

3 − 1

)
a = 3 − 2b = 5 + 4 cos α

3

and � =




I2 − J2/3 0 0 0
0 I2 − J2/3 S − J2/3 S − J2/3
0 S − J2/3 I2 − J2/3 S − J2/3
0 S − J2/3 S − J2/3 I2 − J2/3


 .

The eigenvalues of S and G are (a±b)/3 and {2(a+b)/3−2, 2(a−b)/3}, respectively. Hence
the eigenvalues of � are {1, 1/3} (type 0), {2(a + b)/3 − 1, 1 + 2(a − b)/3} (type 1), {1 − (a +
b)/3, 1 − (a − b)/3} (type 2). Next we list the eigenvectors. First we observe that there is
no eigenvalue d of S such that −d is eigenvalue of G unless b = 4/3, that is, cos α = −1.
We omit this case as it is easy to handle. Hence, only the second construction of type 2
eigenvectors applies. The eigenvectors of S (and G) are β1 = (1, 1)T and β2 = (1,−1)T . We
can now list all eight eigenvectors of �:

type 0:(β1, 0, 0, 0)T , (β2, 0, 0, 0)T type 1:(0, β1, β1, β1)
T , (0, β2, β2, β2)

T

type 2:(0, β1,−2β1, β1)
T , (0, β1, β1,−2β1)

T , (0, β2,−2β2, β2)
T , and

(0, β2, β2,−2β2)
T .

The determinant calculation is easy. It is also easy to find an orthogonal set of eigenvectors
from the above and we can compute the inverse of � at little cost. We have the formal
solution to the state determination problem. It should be noted that in this example a = b = 1
corresponds to MUBs.
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6. Discussion

We analyzed the information content of a quantum state determination experiment using
projective measurements in different bases. The information gain is a functional of the prior
distribution. We get the average information gain by averaging over the initial distribution.
When the number of measurements is large and the prior distribution is uniform, the
information gain is proportional to the log of volume of the parallelepiped spanned by the
basis vectors after an affine translation. The calculation of the determinant in the case of
MUBs and some generalization yields rich dividends. In all these cases we obtain formal
solutions to the problem of state determination when the measurement scheme is complete.
The methods for calculating the eigenvalues could be extended to more general bases. We
also give an estimate of the information gain in the general case. Characterization of optimal
measurements in the general case is a difficult problem. Three other difficult problems are (1)
estimating information gain in measurements on infinite dimensional systems, (2) incomplete
measurements and (3) information gain for priors other than the uniform distribution. Yet
another important issue is the existence of bases of the preceding sections. The KRSW
construction provides some examples. More such constructions may be carried out using
character sums—a very rich and fertile area in number theory [18]. I aim to address these
problems in the future.
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